Indian Statistical Institute Semestral Examination 2008-2009 B.Math Hons.I year

Probability Theory I

08-12-2008

Max Marks 100

- 1. There are n objects. An object is chosen at random and replaced. The experiment is repeated. Let R be the number of trials required for one of the objects to be sampled twice. Note that R takes values $2, 3, \dots, n+1$
 - (a) Describe a sample space for the experiment. [5]
 - (b) Calculate $q_r \equiv P(R=r)$, $2 \le r \le n+1$. [6]
 - (c) For $2 \leq r \leq n+1$, let P_r be the probability that more than r trials are required for an object to be sampled twice. Show that $P_r = \frac{(n)_r}{n^r}$ where $(n)_r \equiv n(n-1)\cdots(n-r+1)$. Hence deduce that $q_2 + \cdots + q_{n+1} = 1$.

[9]

- 2. Let n > 1 and $-n \le x \le n$ be integers. A path from (0,0) to (n,x) is a sequence $\omega = (\omega_1, \dots, \omega_n)$, $\omega_i \omega_{i-1} = \pm 1$, $i = 1 \dots n$, $\omega_0 \equiv 0$ and $\omega_n = x$
 - (a) For each $x, -n \le x \le n$, calculate the number of paths from (0,0) to (n,x).
 - (b) Suppose all paths are equally likely. Let $E_{2n} = \{\omega : \omega_{2n} = 0, \}$ be all paths from (0,0) to (2n,0). Show that $\sqrt{\pi n} P(E_{2n}) \to 1$ as $n \to \infty$.

[10]

- 3. Suppose events occur at random time points $T_i \in (0, \infty), i = 1, 2, \cdots$. Let $N_t :=$ number of events in (0, t] for $t > 0, N_0 \equiv 0$. Suppose for disjoint intervals, $(0, t_1], (t_1, t_2], \cdots (t_{n-1}, t_n]$ the random variables $N_{t_1}, N_{t_2} - N_{t_1}, \cdots N_{t_n} - N_{t_{n-1}}$ are independent. Under suitable assumptions show that N_t is a Poisson random variable. [10]
- 4. Let $X \sim N(0, 1)$.
 - (a) Show that $EX^{2k} = 1 \cdot 3 \cdot 5 \cdots (2k-1)$ for $k = 1, 2, \cdots$ (Hint: use integration by parts, successively, to calculate LHS.) [10]

- (b) Show that for $s \ge 0$, the moment generating function of X is given by $\to e^{sX} = e^{\frac{S^2}{2}}$. [10]
- 5. Let X be a non negative random variable having a density. Show that

(a)
$$EX = \int_0^\infty P(X > x) dx$$
. [10]

(b) Deduce from a) that for $n \ge 1$,

$$EX^{n} = \int_{0}^{\infty} nx^{n-1} P(X > x) dx.$$
 [10]

6. Suppose X has density

$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2} - \infty < x < \infty.$$

- (a) Calculate the median of X.
- (b) Show that the random variable

$$Y = \begin{cases} 1/X & X \neq 0, \\ 0 & X = 0, \end{cases}$$

also has the density f(x).

[12]

8